Few-shot learning (FSL) is a central problem in meta-learning, where learners must efficiently learn from few labeled examples. Within FSL, feature pre-training has recently become an increasingly popular strategy to significantly improve generalization performance. However, the contribution of pre-training is often overlooked and understudied, with limited theoretical understanding of its impact on meta-learning performance. Further, pre-training requires a consistent set of global labels shared across training tasks, which may be unavailable in practice. In this work, we address the above issues by first showing the connection between pre-training and meta-learning. We discuss why pre-training yields more robust meta-representation and connect the theoretical analysis to existing works and empirical results. Secondly, we introduce Meta Label Learning (MeLa), a novel meta-learning algorithm that learns task relations by inferring global labels across tasks. This allows us to exploit pre-training for FSL even when global labels are unavailable or ill-defined. Lastly, we introduce an augmented pre-training procedure that further improves the learned meta-representation. Empirically, MeLa outperforms existing methods across a diverse range of benchmarks, in particular under a more challenging setting where the number of training tasks is limited and labels are task-specific. We also provide extensive ablation study to highlight its key properties.
translated by 谷歌翻译
在这项工作中,我们研究了沉重的尾部噪声下的随机亚级别方法的高概率边界。在这种情况下,仅假定噪声具有有限的方差,而不是次高斯的分布,众所周知,标准亚级别方法具有很高的概率边界。我们分析了投影的随机亚级别方法的剪裁版本,其中每当具有大规范时,亚级别估计值都会被截断。我们表明,这种剪裁策略既导致了许多经典平均方案的任何时间和有限的地平线界限。初步实验显示以支持该方法的有效性。
translated by 谷歌翻译
我们研究了线性上下文的匪徒问题,其中代理必须从池中选择一个候选者,每个候选者属于敏感组。在这种情况下,候选人的奖励可能无法直接可比,例如,当代理人是雇主雇用来自不同种族的候选人时,由于歧视性偏见和/或社会不公正,有些群体的奖励较低。我们提出了一个公平的概念,该概念指出,当代理人选择一个相对排名最高的候选人时,它是公平的,这可以衡量与同一组的候选人相比,奖励的良好程度。这是一个非常强烈的公平概念,因为代理没有直接观察到相对等级,而取决于基本的奖励模型和奖励的分布。因此,我们研究了学习政策的问题,该策略在背景之间是独立的,而每个小组之间的奖励分配是绝对连续的。特别是,我们设计了一个贪婪的策略,在每个回合中,从观察到的上下文奖励对构建了脊回归估计器,然后使用经验累积分布函数计算每个候选者的相对等级的估计值。我们证明,贪婪的策略在$ t $ rounds之后达到了日志因素,并且以高概率为止,订单$ \ sqrt {dt} $的合理伪regret,其中$ d $是上下文矢量的尺寸。 The policy also satisfies demographic parity at each round when averaged over all possible information available before the selection.我们最终通过概念模拟证明,我们的政策在实践中也可以实现次线性公平伪rebret。
translated by 谷歌翻译
We study a class of dynamical systems modelled as Markov chains that admit an invariant distribution via the corresponding transfer, or Koopman, operator. While data-driven algorithms to reconstruct such operators are well known, their relationship with statistical learning is largely unexplored. We formalize a framework to learn the Koopman operator from finite data trajectories of the dynamical system. We consider the restriction of this operator to a reproducing kernel Hilbert space and introduce a notion of risk, from which different estimators naturally arise. We link the risk with the estimation of the spectral decomposition of the Koopman operator. These observations motivate a reduced-rank operator regression (RRR) estimator. We derive learning bounds for the proposed estimator, holding both in i.i.d. and non i.i.d. settings, the latter in terms of mixing coefficients. Our results suggest RRR might be beneficial over other widely used estimators as confirmed in numerical experiments both for forecasting and mode decomposition.
translated by 谷歌翻译
这项工作研究了凸和Lipschitz功能的在线零级优化。我们基于两个函数评估和$ \ ell_1 $ -sphere的随机化提出了一个新颖的梯度估计器。考虑到可行的集合和Lipschitz假设的不同几何形状,我们分析了在线双重平均算法的算法,代替了通常的梯度。我们考虑对零级甲骨文噪声的两种假设:取消噪声和对抗性噪声。我们提供任何时间和完全数据驱动的算法,它适应问题的所有参数。在文献中先前研究过的噪声的情况下,我们的保证可以比Duchi等人获得的最新界限可比性或更好。 (2015)和Shamir(2017)非自适应算法。我们的分析是基于在$ \ ell_1 $ -sphere上带有显式常数的均匀度量的新加权的Poincar \'e类型不等式,这可能具有独立的利益。
translated by 谷歌翻译
在概率空间或分销回归方面的学习功能的问题正在对机器学习社区产生重大兴趣。此问题背后的一个关键挑战是确定捕获基础功能映射的所有相关属性的合适表示形式。内核平均嵌入式提供了一种原则性的分布回归方法,该方法在概率水平上提高了内核诱导的输入域的相似性。该策略有效地解决了问题的两阶段抽样性质,使人们能够得出具有强大统计保证的估计器,例如普遍的一致性和过度的风险界限。但是,内核平均值嵌入在最大平均差异(MMD)上隐含地铰接,这是概率的度量,可能无法捕获分布之间的关键几何关系。相反,最佳运输(OT)指标可能更具吸引力。在这项工作中,我们提出了一个基于OT的分布回归估计器。我们建立在切成薄片的Wasserstein距离上,以获得基于OT的表示。我们基于这种表示,我们研究了内核脊回归估计量的理论特性,我们证明了普遍的一致性和过多的风险界限。初步实验通过显示提出方法的有效性并将其与基于MMD的估计器进行比较,以补充我们的理论发现。
translated by 谷歌翻译
我们分析了一类养生问题,其中高级问题在于平滑的目标函数的最小化和下层问题是找到平滑收缩图的固定点。这种类型的问题包括元学习,平衡模型,超参数优化和数据中毒对抗性攻击的实例。最近的几项作品提出了算法,这些算法温暖了较低级别的问题,即他们使用先前的下级近似解决方案作为低级求解器的凝视点。这种温暖的启动程序使人们可以在随机和确定性设置中提高样品复杂性,在某些情况下可以实现订单的最佳样品复杂性。但是,存在一些情况,例如元学习和平衡模型,其中温暖的启动程序不适合或无效。在这项工作中,我们表明没有温暖的启动,仍然可以实现订单的最佳或近乎最佳的样品复杂性。特别是,我们提出了一种简单的方法,该方法在下层下使用随机固定点迭代,并在上层处预测不精确的梯度下降,该梯度下降到达$ \ epsilon $ -Stationary Point,使用$ O(\ Epsilon^{-2) })$和$ \ tilde {o}(\ epsilon^{ - 1})$样本分别用于随机和确定性设置。最后,与使用温暖启动的方法相比,我们的方法产生了更简单的分析,不需要研究上层和下层迭代之间的耦合相互作用
translated by 谷歌翻译
Artificial Intelligence (AI) and Machine Learning (ML) are weaving their way into the fabric of society, where they are playing a crucial role in numerous facets of our lives. As we witness the increased deployment of AI and ML in various types of devices, we benefit from their use into energy-efficient algorithms for low powered devices. In this paper, we investigate a scale and medium that is far smaller than conventional devices as we move towards molecular systems that can be utilized to perform machine learning functions, i.e., Molecular Machine Learning (MML). Fundamental to the operation of MML is the transport, processing, and interpretation of information propagated by molecules through chemical reactions. We begin by reviewing the current approaches that have been developed for MML, before we move towards potential new directions that rely on gene regulatory networks inside biological organisms as well as their population interactions to create neural networks. We then investigate mechanisms for training machine learning structures in biological cells based on calcium signaling and demonstrate their application to build an Analog to Digital Converter (ADC). Lastly, we look at potential future directions as well as challenges that this area could solve.
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
Tree-based machine learning algorithms provide the most precise assessment of the feasibility for a country to export a target product given its export basket. However, the high number of parameters involved prevents a straightforward interpretation of the results and, in turn, the explainability of policy indications. In this paper, we propose a procedure to statistically validate the importance of the products used in the feasibility assessment. In this way, we are able to identify which products, called explainers, significantly increase the probability to export a target product in the near future. The explainers naturally identify a low dimensional representation, the Feature Importance Product Space, that enhances the interpretability of the recommendations and provides out-of-sample forecasts of the export baskets of countries. Interestingly, we detect a positive correlation between the complexity of a product and the complexity of its explainers.
translated by 谷歌翻译